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ABSTRACT
NONLINEAR PROCESSES IN MULTI-MODE

OPTICAL FIBERS

by

Hamed Pourbeyram Kaleibar

The University of Wisconsin-Milwaukee, 2014

Under the Supervision of Professor Arash Mafi

Nonlinear processes in optical fibers can affect data transmission and power carried by

optical fibers and can limit the bandwidth and the capacity of optical communications.

On the other hand nonlinear phenomena could be utilized to build in-fiber all-optical

light sources and amplifiers. In this thesis new peaks inside an optical fiber have been

generated using nonlinear processes. An intense green pump laser has been launched

into a short fiber and specific modes have been excited to generate two new peaks in

red and blue wavelengths, where two pump photons are annihilated to create two new

photons in red and blue. The generated peaks are shifted far from pump; therefore

they are less polluted by pump and Raman induced noises. The phase matching

condition and the photon-flux rate for spontaneous and stimulated FWM have been

studied both theoretically and experimentally for a commercial grade SMF-28 fiber.

In low power and spontaneous regime new peaks are generated from quantum vacuum

noise. Using the same pump laser for a long fiber, up to 21 new peaks spanning from

green to Infrared have been generated. These peaks are equally spaced by 13THz.

Generation of a Raman cascade spanning the wavelength range of 523 to 1750 nm

wavelength range, in a standard telecommunication graded-index multimode optical

fiber has been reported. Despite the highly multimode nature of the pump, the Raman

peaks are generated in specific modes of the fiber, confirming substantial beam cleanup

during the stimulated Raman scattering process.
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Chapter 1

Introduction

1.1 Optical Fibers

Total Internal Reflection (TIR) happens when a wave is incident from a medium with

a lower refractive index to a medium with a higher refractive index and the incident

angle is larger than "Critical angle". The total internal reflection is the main phe-

nomenon responsible for the transmission of light through an optical fiber. The first

uncladded glass fibers were fabricated in 1920s using this phenomenon. However born

of fiber optics field could be considered in 1950s when by using a cladded layer con-

siderable improvement was achieved in the quality of the optical fibers [1].

Fiber optic communication was not used practically for several years and until mid-

1950 virtually all communication systems relied on the transmission of information

over electrical cables or radio-frequency and microwave electromagnetic radiation prop-

agation in free space.

One of the early issues was high losses in light transmission for long distances, because

light unlike radio frequency waves gets absorbed easily in an opaque medium like fog

or clouds. In 1970, by fabricating fibers from low-loss silica, this issue was resolved [2].

Nowadays lightwave communication is the preferred technology in many applications,
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because of its enormous transmission capacity, distant spacing of repeaters, and im-

munity from electromagnetic interference (EMI).

Optical fibers act like a waveguide for light. A multi-mode fiber is a waveguide that

supports many modes and a single-mode fiber supports only a single mode. multi-mode

fibers usually have larger core diameters and are used for short distance communica-

tion and high power transmission.

1.2 Nonlinear Processes in Optical Fibers

Throughout the long history of optics, and indeed until relatively recently it was

thought that all optical media were linear, and that their optical properties were

independent of light intensity. However, more recently it was observed that optical

media can show nonlinear behavior in the presence of high intensity light. The presence

of an optical field modifies the properties of the medium, which in turn could cause

changes in the light passing through it. Nonlinearity is related to the medium in

which light is propagating through, and not the light itself. Hence, it is the nonlinear

medium which makes the interaction of light with light possible.

The beginning of nonlinear optics could be considered 1961, when for the first time a

Ruby laser was used to generate the second harmonic radiation inside a crystal [12].

Later, with the availability of low-loss optical fibers in the 1970s, investigation of

nonlinear effects in optical fibers became feasible, and for the first time Raman and

Brillouin scattering inside an optical fiber were studied. [3]. Soon after, other nonlinear

phenomena such as four-mixing were studied as well. [4].



www.manaraa.com

3

1.3 Motivation for This Work and Outline of Dis-

sertation

Several features such as small core size and long interaction length make optical fibers

a desired nonlinear media. In the early years of fiber optics, the main focus was on

single-mode optical fibers and multi-mode fibers were considered an undesired medium

for optical communication and nonlinear optics. However, with the recent advances in

technology and the need for higher data capacity, there has been a growing interest in

multi-mode fibers. It has been estimated that the single-mode fiber in a few decades

will reach it’s maximum capacity which naturally will lead to use of multi-mode fibers

as a way to increase capacity per fiber [5].

Although, the core diameter of a multi-mode fiber is larger than that of a single mode

fiber, light still remains mostly intense in the the center of the fiber [6]. Moreover,

the presence of several modes in a multi-mode fiber and the interaction between them

makes this fiber a suitable medium for nonlinear processes. The need for a better

understanding of these processes inside a multimode optical fiber encouraged us to

conduct this research and investigate the nonlinear behavior in the presence of many

modes.
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Chapter 2

Four-Wave-Mixing in Multi-Mode

Fibers

2.1 Theoretical Study

2.1.1 Origin of Four-wave-Mixing

Maxwell’s equations are the equations governing the propagation of an electromagnetic

field in a medium. In the international system of units and considering a medium in

the absence of free charges and currents such as optical fibers (J = 0, ρf = 0) these

equations take the form of:

∇ × E = −∂B

∂t
, (2.1)

∇ × H =
∂D

∂t
, (2.2)

∇.D = 0, (2.3)

∇.B = 0, (2.4)
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where E and B are electric and magnetic field vectors, and D and B are corresponding

electric and magnetic flux densities.

The flux densities D and B arise in response to the electric and magnetic fields propa-

gating inside the medium and are related to them through constitutive relations given

by:

D = ǫ0E + P (2.5)

H = µ0(H + M) (2.6)

where ǫ0 is the vacuum permitivity, µ0 is the vacuum permeability and P and M are

induced electric and magnetic polarizations. For nonmagnetic medium such as optical

fiber, M = 0.

Wave equation that describes light propagation in optical fibers can be obtained using

Maxwell’s equations, by eliminating B and D:

∇ × ∇ × E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
. (2.7)

The origin of FWM lies in the nonlinear response of a bound electron of a material to

an electromagnetic field. This induces a polarization in the medium containing terms

related to the linear and nonlinear susceptibilities

P = ǫ0

(

χ(1) : E + χ(2) : EE + χ(3) : EEE

)

. (2.8)

In the equation above χ(1) is the linear polarization, and χ(2) is the second-order

susceptibility which is the source of nonlinear behaviors such as second-harmonic gen-

eration and sum-frequency generation. Last term, χ(3), is third-order susceptibility

and is responsible for phenomena such as third-harmonic generation, nonlinear refrac-
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tion and four-wave-mixing. In an isotropic medium the second-order susceptibility

vanishes, so second-order nonlinear processes do not occur in silica fibers. The third-

order susceptibility is responsible for processes involving nonlinear interactions among

four optical waves and includes such phenomena as Raman Scattering, four-wave-

mixing, and third-harmonic generation. Hence, the nonlinear polarization induced in

a fiber can be understood from a third-order polarization term in Eq. 2.8 [7]:

PNL = ǫ0χ(3) : EEE, (2.9)

In general, FWM is a polarization dependent process and requires a full vectorial

study. However, in most cases conducting a scalar study will give reasonable answers.

For CW waves oscillating at frequencies ωj and linearly polarized along the same axis

the total electric field can be written as

E =
1

2

∑

j

Ej exp[i(βjz − ωjt)] + c.c., (2.10)

where indices j show different frequency components of the electric field and βj =

ñjωj/c is the propagation constant and ñj is the mode index.

2.1.2 Coupled Amplitude Equations

Degenerate FWM transfers energy from a strong pump wave to two waves, upshifted

and down shifted in frequency from pump frequency ωp, known as Stokes and anti-

Stokes beams. Equation 2.10 is substituted in the wave equation 2.7, assuming quasi-

CW conditions in which time dependence of the field components Ej can be neglected.
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By integrating over spatial mode profiles, the evolution of the amplitude Aj(z) can be

represented by coupled amplitude equations:

∂zAp =
in2(ωp)ωp

c
[(ηpp|As|2 + 2

∑

k=a,s

ηpk|Ak|2)Ap + ηppsaAsAaA∗
pe

−i∆kz] (2.11a)

∂zAs =
in2(ωs)ωs

c
[(ηss|As|2 + 2

∑

k=p,s

ηsk|Ak|2)As + ηsappA2
pA

∗
aei∆kz] (2.11b)

∂zAa =
in2(ωa)ωa

c
[(ηaa|Aa|2 + 2

∑

k=p,a

ηak|Ak|2)Aa + ηasppA
2
pA∗

sei∆kz], (2.11c)

where spatial dependence of electric field is given by Ej(r) = Fj(x, y)Aj(z). Using

undepleted pump approximation in which pump amplitude Ap is strong than those of

Stokes As and anti-Stokes Aa beams the pump evolution equation will be:

∂zAp =
in2(ωp)ωp

c
ηppP p

0 Ap (2.12)

which can be solved independent of the other two equations and will give :

Ap(z) =
√

P p
0 eiϕp exp(iγppP

p
0 z) (2.13)

where P p
0 is the pump power and ϕp is the phase of pump and

γpp =
n2(ωp)ωp

c
ηpppp (Note : ηpppp = ηpp) (2.14)

These equation could be solved classically and solution could be found. However it

become useful to consider a quantum approach and replace As and Aa with quantum

operator Âs and Âa which satisfies commutation relation:

[Âi(z, τ), Â†
j(z, τ ′)] = δijδ(τ − τ ′) j, k = x, y (2.15)
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Under the undepleted-pump approximation the differential equations governing the

generation and propagation of the Stokes As at frequency ωs and anti-Stokes Aa at

frequency ωa in the presence of a strong pump field Ap at frequency ωp are given by:

∂zÂs = 2iγps|Ap|2Âs + iγsaA2
pÂ∗

aei∆βz

∂zÂa = 2iγpa|Ap|2Âa + iγasA
2
pÂ∗

se
i∆βz

(2.17)

Here Ap have been considered as a classical field while Âi (i = a, s) is a quantum

operator. The nonlinear coefficients in Eqs. 2.16 are given by

γps =
n2(ωs) ωs

c
ηspps, γsa =

n2(ωs) ωs

c
ηspap,

γpa =
n2(ωa) ωa

c
ηappa, γas =

n2(ωa) ωa

c
ηapsp,

(2.18)

ηijkl =
∫

d2x F ∗
i FjF

∗
k Fl, i, j, k, l ∈ {p, s, a}, (2.19)

where Fp, Fs, and Fa are the mode field profiles evaluated at ωp, ωs, and ωa, respec-

tively, and the nonlinear index coefficient n2 is evaluated at the respective frequencies.

c is the speed of light in vacuum, and each mode field profile is assumed to be nor-

malized to unity, i.e.
∫

d2x |Fi|2 = 1.

The pump, Stokes, and anti-Stokes fields each in general can belong to different spatial

modes of the optical fiber, as long as they satisfy energy and momentum conservation.

By using a 523nm light as the input, only few modes will be excited in the fiber and

only some of suitable modes in output will carry substantial amount of power.

The general solutions of Eqs. 2.16 can be expressed as
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As(z) = As(0)
[

cosh(gz) + i
κ

2g
sinh(gz)

]

eiφs (2.20a)

+ A∗
a(0)

[

i
γsaP 0

p

g
sinh(gz)

]

e2iϕpeiφs ,

Aa(z) = Aa(0)
[

cosh(gz) + i
κ

2g
sinh(gz)

]

eiφa (2.20b)

+ A∗
s(0)

[

i
γasP

0
p

g
sinh(gz)

]

e2iϕpeiφa ,

where

φs = 2γpsPpz + κz/2, (2.21a)

φa = 2γpaPpz + κz/2, (2.21b)

and

g =

√

(

γ̃1P 0
p

)2

−
(

κ/2
)2

, (2.22a)

κ = 2γ̃2P
0
p − ∆β, (2.22b)

γ̃1 =
√

γsaγas, (2.22c)

γ̃2 = γps + γps − γpp. (2.22d)
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2.1.3 Phase Matching

To generate four wave mixing in a fiber necessary condition of phase-matching can

be satisfied which could be done by various methods such as divided-pump process,

birefringence matching, near zero-dispersion wavelength matching, and phase match-

ing using different fiber modes [8]. Focus of this work is on the last type while using

a single laser pump configuration. For single pump configuration both pump photons

are traveling at the same frequancy, and as a result it has been shown that there will

be large shift between signal and pump frequency compared to all other cases of phase

matching, as was first observed by C. Lin in 1981 [9]. The advantage of this method

is being less affected by Raman Scattering, so the generated signal will be far away

from Raman noise and won’t be polluted by it, which will lead to a naturally pure

source of entangled photons. ∆β is the phase mismatch between the pump, Stokes,

and anti-Stokes fields and is given by

∆β = 2βp(ωp) − βa(ωa) − βs(ωs), (2.23)

where βp(ωp), βs(ωs), βa(ωa) are the propagation constants of the pump, stokes, and

anti-stokes modes at frequencies ωp, ωs and ωa respectively. Equation 2.23 can be

approximated by the Taylor expansion up to the first order in Ω around ωp as

∆β(Ω) = δβ(0) + δβ(1)Ω − β̄(2)Ω2 (2.24)

where
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(2πc)Ω = ωp − ωs = ωa − ωp, (2.25a)

δβ(0) = 2βp(ωp) − βa(ωp) − βs(ωp), (2.25b)

δβ(1) = (2πc)
(

β(1)
s (ωp) − β(1)

a (ωp)
)

, (2.25c)

β̄(2) = (2πc)2 1

2

(

β(2)
s (ωp) + β(2)

a (ωp)
)

, (2.25d)

where equation 2.25a is a result of momentum conservation and the following definition

has been used:

β
(n)
i (ω) = ∂(n)

ω βi(ω), i ∈ {p, s, a}. (2.26)

For the SMF-28 fiber, linear phase matching can be achieved when the pump mode

is in the LP01 mode. In Fig. 2.1, the linear phase matching condition can be shown

by ∆β(Ω) = 0 as the intersection of β̄(2)Ω2 plotted as a function of Ω in a blue

dashed parabola, and δβ(0) + δβ(1)Ω plotted in a red solid line. The horizontal axis

Ω in Fig. 2.1 is the spectral separation of the LP01 mode from the pump with the

other mode being in LP02. Therefore, the linearly phase-matched intersection point

at Ω ≈ 3285 cm−1 corresponds to the anti-Stokes (Stokes) in the LP01 (LP02) mode,

while the intersection at Ω ≈ −2961 cm−1 corresponds to the anti-Stokes (Stokes) in

the LP02 (LP01) mode.

The numerical values of the parameter describing the phase-matched frequencies are

δβ(0) ≈ 231.1 cm−1, δβ(1) ≈ 7.84 × 10−3, and β̄(2) ≈ 2.37 × 10−5 cm. The linear

phase-matching spectral shifts can be approximated to the first order by
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Figure 2.1: Phase-Matching for FWM. Dashed blue curve shows nonlinear part and solid
black line shows linear part of phase matching

ΩL
pm = ±

√

√

√

√

δβ(0)

β̄(2)
+

δβ(1)

2β̄(2)
. (2.27)

It should pointed out that in SMF-28, the β̄(2) in Eq. 2.25d can be accurately described

by only the chromatic dispersion and the waveguiding contribution to its value can be

ignored in the phase-matching process, as has also been verified numerically. There-

fore, one can write

β̄(2) ≈ λpDp, where Dp = −(2π)−1λ2∂2
λn(λ)|λp

. (2.28)

This approximation results in in less than 1% deviation from the exact value with

β̄(2) ≈ 2.39 × 10−5 cm.

The maximum gain is obtained at the nonlinear phase-matching point ΩNL
pm which is
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approximately given by

ΩNL
pm = ±

√

√

√

√

δβ(0) − 2γ̃2P
0
p

β̄(2)
+

δβ(1)

2β̄(2)
(2.29)

The maximum gain value is gmax = γ̃1P
0
p . Relation between pump frequency and

shifted frequencies are

ωa = ωp + (2πc)ΩNL
pm (2.30)

ωs = ωp − (2πc)ΩNL
pm. (2.31)

Around the phase-matching point, the gain can be reliably approximated as

g = gmax

√

1 − (Ω̃/Ω̃0)2 (2.32)

where

Ω̃0 =
γ̃1P

0
p

|δβ(1)/2 − β̄(2)ΩNL
pm|

(2.33)

Using Eq. 2.27, Ω̃0 can be reliably approximated as
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Ω̃0 ≈ γ̃1P
0
p

√

β̄(2)δβ(0)
(2.34)

To adjust numerical calculation with experimental result, values used for fiber core

radius and index difference are slightly different from what we found in data sheet.

This could be resulted from some unknown features usually found in commercial opti-

cal fibers. In figure 2.2 index difference and fiber core radius size for a specific stokes

wavelength has been shown. Each graph shows a specific stokes beam at wavelength

and LP02 mode.

Figure 2.2: Core radius and index difference for different stokes wavelengths from 628nm to
650nm
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2.1.4 Signal Power versus Pump Power

In spontaneous FWM where there is no injected light at Stokes and anti-Stokes are

generated from vacuum noise which is basically a quantum effect [10]. Photon gener-

ation in Stokes wavelength is:

Iu ≡< Â†
u(L, τ), Âu(L, τ) > (2.35)

where index u = s is for Stokes, u = a for anti-Stokes and brackets denote average

with respect to vacuum input state and a thermally populated photon reservoir [10].

The Stokes photon flux (According to Ref. [10]) is given by

Is = c
∫

dΩ̃

(

γsaP 0
p

g

)2

sinh2(gz) (2.36)

Is = c (γsaP 0
p z)2

∫

dΩ̃

(

sinh(gz)

gz

)2

Is = c Ω̃0(γsaP 0
p z)2

∫

dx

(

sinh(gmaxz
√

1 − x2)

gmaxz
√

1 − x2

)2

Is = c
Ω̃0

g2
max

(γsaP 0
p )2

∫

dx
sinh2(gmaxz

√
1 − x2)

1 − x2

Is = c

(

γsa

γas

)

Ω̃0 Π(gmaxz),

The anti-Stokes photon flux is similarly given by
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Ia = c

(

γas

γsa

)

Ω̃0 Π(gmaxz), (2.37)

Here, it have been defined by

Π(y) =
∫

dx
sinh2(y

√
1 − x2)

1 − x2
. (2.38)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

y

P
Hy
L
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0

5
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15

20

y

Figure 2.3: The Π function. For small y it act like a linear function and for large y like a
hyperbolic sine.

Now by using Eq. 2.34 and Eq. 2.28 the photon flux at Stokes and anti-Stokes fre-

quencies could be expressed as

Is ≈ c

(

γsa

γas

)

gmax
√

λpDpδβ(0)
Π(gmaxz) (2.39)

Ia ≈ c

(

γas

γsa

)

gmax
√

λpDpδβ(0)
Π(gmaxz) (2.40)

Therefore, the photon flux is proportional to gmax as it should be. However, it is
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inversely proportional to δβ(0) which signifies the mode-level separation at the pump

wavelength. In other words, δβ(0) shows how different the effective indexes of the

modes are at the pump wavelength. Another very rough approximation is

√

β̄(2)δβ(0) ≈ β̄(2)Ωpm (2.41)

Therefore, although a rough approximation but good for building intuition could be

Is ≈ c

(

γsa

γas

)

gmax

λpDpΩpm

Π(gmaxz) (2.42)

Therefore, the photon flux is inversely proportional to the spectral separation of the

Stokes and anti-Stokes from the pump. The pump is assumed to be a Gaussian pulse

in time in the form

P 0
p =

Ep
√

πτ 2
0

exp

(

−τ 2

τ 2
0

)

, (2.43)

where Ep is the pump pulse energy. The pump pulses used in the experiment are

nearly 8 ns long, therefore, it is reasonable to assume a very slowly varying envelope

approximation and assume the dispersive terms do not affect the pump power envelope.

Total Stokes energy for a given pump pulse cycle can be calculated as
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Es = h̄ωs

∫ ∞

−∞
dτ Is (2.44)

= h̄ωs

∫ ∞

−∞
dτ c

(

γsa

γas

)

Ω̃0 Π(gmaxz)

≈ h̄ωs

∫ ∞

−∞
dτ c

(

γsa

γas

)

γ̃1P
0
p

√

β̄(2)δβ(0)
Π(γ̃1P 0

p L)

≈ h̄ωscτ0

L
√

β̄(2)δβ(0)

(

γsa

γas

)

∫ ∞

−∞
dy γ̃1

Ep
√

πτ 2
0

Le−y2

Π(γ̃1
Ep
√

πτ 2
0

Le−y2

)

≈
(

γsa

γas

)

h̄ωscτ0

L
√

β̄(2)δβ(0)
Ψ(γ̃1

Ep
√

πτ 2
0

L)

where it have been defined

Ψ(z0) =
∫ ∞

−∞
dy z0e−y2

Π(z0e−y2

) (2.45)

=
∫∫

dxdy z0e−y2 sinh2(z0e−y2
√

1 − x2)

1 − x2
.

Using the method of steepest descent, it possible to show that

Π(y) ≈
√

π

4

exp(2y)√
y

, y ≫ 1. (2.46)

Another important approximation needed is

∫ ∞

−∞
dx

√

ye−x2 exp(ye−x2

) =
√

πey, y = 1. (2.47)
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Therefore, it could be written

Ψ(z0) ≈ π

4
√

2
exp(2z0), z0 ≫ 1. (2.48)

Therefore, the Stokes pulse energy is given by

Es ≈
(

γsa

γas

)





π
√

32β̄(2)δβ(0)





(

cτ0

L

)

h̄ωs exp



2γ̃1
Ep
√

πτ 2
0

L



 (2.49)

For our experiment (β̄(2)δβ(0))−1/2 ≈ 13.51. Using n2 = 2.2 × 10−16 cm2/W, It could

be calculated that γ̃1 = 3.05/W.km and γ̃2 = 4.88/W.km.

2.2 Experimental Results

Figure 2.4: Signal (left) and Idler (right) of FWM generated in SMF-28

Experimental setup includes a 523nm frequency doubled Nd:YLF laser with 8 ns pulse

duration and Repetition rate of 100Hz. Output of this laser is launched into a short

(10-50cm) SMF-28 fiber. Core radius of the fiber is 8.2µm and output power of the
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Figure 2.5: SEM image of SMF-28 used in experiment

laser is around hundreds of Kwatts. By properly exciting the fiber modes and coupling

enough power into the fiber anti-Stoke and Stokes peaks at blue (446.5 nm) and Red

(631.5 nm) have been observed, as shown in figure 2.6.
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Figure 2.6: Measured spectrum of generated Stokes and anti-Stokes by FWM

Since the fiber is short no significant Raman peaks have been detected in the exper-

iment. Only for fibers longer than 30cm and at high powers there was a small peak

of Raman in 532nm. Figure 2.7 shows the Raman peak observed for a 30cm fiber. In

this figure the detection was optimized to observe maximum Raman signal.

The observed anti-stoke peak was in red and it’s mode was mostly like LP02 mode.

As expected, four wave mixing occurs with a large shift to pump for a single-mode

Pump (two pumps at same frequency) [11], and almost only the fundamental mode of
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Figure 2.7: Beside FWM, Raman gets generated in longer fibers. Small peak near pump at
around 532 shows Raman peak gets generated for a 30cm fiber

the fiber (LP01) gets excited.
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Figure 2.8: Stokes power beam as a function of pump power

Output of a FWM process is sensitive to the modes which are excited inside the fiber.

Hence, one needs to excite the proper modes to observe favored output. As shown



www.manaraa.com

22

in figure 2.4, experimental results show a Stokes at LP02 and an anti-Stokes at LP01

generated by a pump in LP01 mode. These images are the outputs of 15cm of the

SMF-28.

2.3 Discussion

In this section FWM in a SMF-28 has been investigated both theoretically and ex-

perimentally. An approximate theoretical formula for photon flux in a SMF-28 fiber

has been introduced. Also, the intensity of the stokes beam as a function of pump

power has been experimentally investigated. Although experimental and theoretical

results show the same behavior, numerically they do not match perfectly and for an

measured pump power, the theoretical estimate for the Stokes power is lower than the

value observed in the experiment.

In Fig. 2.10 result of experimental data and theoretical calculations have been shown,

in which dashed blue line shows theoretical calculation and blue dots show experimen-

tal data and red line show line fitted to experimental data. For 15cm and 30cm slopes

are identical while for 50cm slopes for experimental and theoretical results does not

match. Investigation of parameters affecting the generation of Stokes and anti-Stokes

beam could be as a future study to show how experiment and theory match.
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(b) 30cm
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Figure 2.9: Logarithmic plot of experimental measurements for signal energy versus pump
power in (a) 15 cm, (b) 30cm and (c) 50cm of a SMF-28 fiber.
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(b) 30cm
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Figure 2.10: Logarithmic plot of theoretical and experimental data for signal energy versus
pump power in (a) 15 cm, (b) 30cm and (c) 50cm of a SMF-28 fiber.
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Chapter 3

Raman Scattering in Multi-Mode

Fibers

3.1 Introduction

Stimulated Raman scattering (SRS) is a well-known nonlinear process with numerous

applications including optical amplifiers, tunable lasers, spectroscopy, meteorology,

and optical coherence tomography. SRS was first observed in silica glass fibers in

1972 by Stolen et al. [13]. They used a frequency-doubled, pulsed, Nd:YAG laser

operating at the 532 nm wavelength to pump a single-mode optical fiber and observed

Stokes emission at 545 nm. Since then, several groups have reported the observation

of SRS in optical fibers using various configurations [15–18]. Cohen and Lin [15]

generated 6 cascaded Raman peaks in a silica fiber, pumped by a mode-locked, Q-

switched, Nd:YAG laser operating at 1064 nm. Rosman [16] observed 15 orders of

cascaded Raman peaks by pumping a silica fiber at 532 nm with a frequency-doubled

Nd:YAG laser. Other configurations involving unconventional fibers have been used

for extreme Raman-comb generation. For example, Couny et al. [18] demonstrated

the generation of a Raman comb spanning wavelengths from 325 nm to 2300 nm in a
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1m-long hydrogen-filled hollow-core photonic crystal fiber.

In this part generation of new wavelengths, mediated by the SRS process, in a stan-

dard graded-index multimode fiber (GIMF) have been studied. The GIMF is pumped

at a wavelength of 523 nm, and a cascade of optical-frequency Raman peaks is gen-

erated on the Stokes side of the pump. At high power levels the measured spectrum

extends up to 1750 nm, which is the upper detection limit of experimental instru-

ments have been used which is an optical spectrum analyzer (OSA). The generation

of such a wide wavelength range, extending from 523 to 1750 nm, using a large-core

telecommunication-grade multimode fiber which have been done distinguishes results

reported in this thesis from those carried out in small-core or highly customized optical

fibers [19].

Multimode optical fibers are easy to handle and are also easy to align to external

sources; however, their large core diameter is perceived as undesirable for nonlinear

applications. Despite a lower effective nonlinearity associated with a larger core of

conventional multimode fibers, the multimode nature of these fibers can play an im-

portant role in some nonlinear applications. In particular, the presence of multiple

propagating modes with different dispersive properties results in expanded phase-

matching opportunities for the generation of four-wave mixing (FWM) signals in

optical fibers [7, 14, 17, 20]. The GIMF used in our experiments has two desirable

properties that make it particularly suitable for SRS generation. First, because the

effective modal area of each mode in the GIMF scales only as square root of the core

area, the effective nonlinearity of some propagating modes is comparable with con-

ventional single-mode fibers [6]. Second, a relatively high GeO2 content in the core of

the standard telecommunication GIMF used in experiments results in a higher peak

Raman gain coefficient compared with silica-core fibers [21].
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3.2 Generation of New Wavelengths and Spectral

Measurements

The pump have been used in experiment is a frequency-doubled, Q-switched, Nd:YLF

laser operating at 523 nm wavelength, and its 8-ns duration pulses are coupled to the

input tip of the fiber using a microscope objective. The laser beam is not diffraction-

limited, and many modes in the fiber are excited simultaneously. The GIMF is a

1-km long standard, 50/125-µm, bare fiber (Corning ClearCurve OM2). The output

spectrum is measured using a CCS200 spectrometer (from Thorlabs) operating in the

range of 200–1000 nm and a MS9740A OSA (from Anritsu) covering the 600–1750 nm

wavelength range. Energy of input pulses required for reaching the Raman threshold

have been measured immediately after coupling into the fiber (less then 1-meter of

propagation inside the GIMF) to be 20.9 µJ; estimated peak power is to be about

2.5 kW. The pulse energy decreased to about 0.515 µJ after 1-km of propagation,

which is consistent with the expected attenuation of about 16 dB/km at the pump

wavelength. The measured threshold power for the first Raman peak (P cr
0 ) is consistent

with gRP cr
0 Leff ≈ 16Aeff [7] using the effective length of Leff = 270 m (considering the

16 dB/km attenuation), gR ≈ 2.9×10−13 m/W (at 523 nm wavelength and considering

the GeO2 doping), and an effective area of Aeff = π × (62.5 µm)2 (considering the

heavily multimode and overfilling nature of the pump).

The sequential generation of cascaded Raman peaks is initiated by the pump at

523 nm. As the pump power is increased, the first Stokes line extracts power from the

pump until it becomes strong enough to seed the generation of next Stokes line. This

process continues and more and more Raman peaks gets generated with increasing

pump power. The 20 cascaded peaks shown in Fig. 3.1(a) extend from 523 nm to just
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above 1000 nm in wavelength. The estimated input peak power of pump pulses used

in the experiment is 22 kW for this figure.

As the pump power is further increased, even more cascaded Raman peaks appear

beyond the 1000 nm wavelength range of spectrometer. Figure 3.1(b) shows the spec-

trum measured with the Anritsu OSA in the range of 900–1750 nm at the maximum

pump power level (just below the burning threshold of fiber’s input tip). It is necessary

to stress that the two plots in Figs. 3.1(a) and 3.1(b) should not be compared directly

because they correspond to different power levels and employ different vertical scales.

The spectral dip at around 1300 nm and the broad peak beyond 1400 nm are two

notable features in this infrared range. The appearance of the spectral dip centered

at the 1320-nm wavelength is related to a reduction in the SRS gain occurring near

the zero-dispersion-wavelength (ZDW) of the GIMF, where the SRS gain is suppressed

due to a near-perfect phase-matching of the FWM process [22,23]. The dip at 1320 nm

can be seen more clearly in Fig. 3.2, where the data have been plotted in Fig. 3.1(b)

on a logarithmic power scale.

In our opinion, the broad peak centered at 1600 nm results from the onset of modula-

tion instability in the presence of anomalous dispersion. The resulting short pulses can

experience Raman-induced spectral shifts as well as collision-based spectral broaden-

ing, resulting in a broad supercontinuum-like feature [24, 25]. The generation of the

longer wavelengths beyond the ZDW is a very complex phenomenon and is heavily

influenced by parametric processes. Even in the absence of perfect phase matching,

FWM can seed higher-order Raman waves that are subsequently amplified through

SRS [26, 27].

The presence of efficient FWM phase-matching opportunities in the GIMF impacts

considerably the generation of the cascaded Raman peaks. Figure 3.3 shows the spec-
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Figure 3.1: (a) Cascaded Raman peaks measured with the spectrometer. (b) Spectrum
measured by the OSA when pump power is increased to just below the burning threshold of
fiber’s tip; the spectral dip at around 1300 nm and the broad peak beyond 1400 nm are two
notable features in this infrared range.

Figure 3.2: Same as Fig. 3.1(b) but data plotted using a logarithmic vertical scale. The
input pump power is just below the burning threshold of fiber’s tip.

trometer data in the frequency domain, by plotting on the horizontal axis the frequency

shift of the Raman comb relative to the pump frequency, and power on a logarith-
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Figure 3.3: Cascaded Raman peaks measured with the spectrometer and plotted using
frequency shift on the horizontal axis. Notice the presence of FWM peaks on the anti-Stokes
side.

mic scale on the vertical axis. Equal spacing of various peaks on the Stokes side is

expected for a cascaded Raman process. However, the presence of FWM frequencies

on the anti-Stokes side of the pump is the most notable feature in this figure. The

phase-matched frequency counterparts of these FWM idlers on the Stokes side can

affect the location and amplitude of the cascaded Raman peaks. In this experiment

it have been observed that the strength of the FWM signal depended on launch con-

ditions, and FWM was absent (or highly suppressed) in some of the measurements.

The highly multimode nature of the pump made it very difficult to find the optimum

launch position for the generation of the anti-Stokes peaks; It needed to scan the in-

put pump beam over the fiber core to find the point at which the anti-Stokes peaks

appeared with considerable power.

In order to explore the effect of FWM on the SRS peaks, an offset in the input pump

beam used by ≈ 15 µm from the center of the fiber core . The pump now excites

the GIMF modes with different power ratios, resulting in efficient FWM in a different

set of phase-matched wavelengths. The result is a shift in the position of the spectral

combs. The red and green spectra in Fig. 3.4 are measured before and after offsetting

the pump laser, respectively. The shift seems to be seeded around the third cascaded
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Figure 3.4: SRS spectra measured before (red solid line) and after (dashed green line) a
slight offset of the pump beam from the fiber center. Shift of Raman peaks is caused by
different FWM conditions caused by excitation of different fiber modes.

Figure 3.5: The FWHM spectral width of the Raman peaks from Figs. 3.1(a) and 3.3
are plotted as a function of the Stokes peak number. The Stokes peak numbers 0 and 1
correspond to the pump and the first order Raman peak, respectively.

Raman peak, separated by about 50 THz from the pump frequency, which is also

consistent with the location of a FWM peak in Fig. 3.3. Also it have been observed

that the shift is reversed if the input pump beam is aligned back with the center of

the fiber core. Similar observations of the effect of the FWM processes on shifting the

SRS spectrum have been reported by Sharma et al. [28]; they have shown that the

cascaded Raman peaks can shift depending on which modes are excited by the pump

laser.

In Fig. 3.5, the spectral width (full width at half maximum or FWHM) of the Raman
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peaks from Figs. 3.1(a) and 3.3 plotted as a function of the Stokes peak number. The

numbers 0 and 1 correspond to the pump and the first order Raman peak, respec-

tively. Ref. [30] predicted that spectral width of each Raman peak is nearly twice

that of the preceding order because of the broad bandwidth of the Raman gain in

fused silica. The measured FWHM spectral widths of the pump and the first order

Raman peak are 1.30 THz and 2.51 THz, respectively. According to Refs. [29,30], the

spectral bandwidth of the Raman peak under certain conditions is nearly twice that

of the pump. However, their analysis makes the undepleted-pump approximation and

assumes an unchirped Gaussian profile for the pump pulse, neither of which apply to

our experiment. Moreover, the noisy nature of the SRS peaks makes the analysis of

Refs. [29, 30] even less applicable to the spectrum of higher-order Raman peaks. In

our case, the bandwidths of higher-order Raman peaks show an increasing trend as a

function of their Stokes peak numbers.

3.3 Spatial Beam Profiles and Beam Cleanup in

SRS Generation

In continue with experiment the transverse intensity profile of the output beam have

been measured by a CCD camera using several bandpass color filters with a FWHM

spectral bandwidth of about 10 nm. The results are shown in Fig. 3.6. The profile in

Fig. 3.6(a) is measured without a color filter, and the interference of multiple modes

can be clearly observed as a speckle pattern. When a color filter centered at 610 nm is

placed in front of the beam Fig. 3.6(b), a narrow round spot that appears to correspond

to the spatial profile of the fundamental LG00 mode of used GIMF have been observed.

It should be noteed that LG stands for Laguerre-Gaussian which are the eigenmodes of
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Figure 3.6: Measured spatial profiles using a CCD-based beam profiler. Image (a) is mea-
sured with no filters. The other 4 images are obtained using color filters centered at (b)
610 nm, (c) 700 nm, (d) 770 nm, and (e) 890 nm.

the GIMF under the weak-guidance approximation. The LGnm modes can be related

to the familiar notation of the LPm,n+1 modes commonly used for step-index fibers.

A donut-shape spot Fig. 3.6(c) is observed when a color filter centered at 700 nm is

placed in front of the beam; the shape and the size of the beam makes it believe that it

corresponds to the LG01 mode of fiber. Actually in practice, the two fold degeneracy

of the LG01 mode is slightly broken to orthogonal double-lobed spatial profiles of

Hermite-Gaussian modes [31] due to birefringence (similar to the two polarization of

the LP01 modes). The donut shape in the measurement arises when both double-

lobed spatial profiles are present simultaneously, primarily due to the large bandwidth

(10 nm) of the color filter used for imaging the modes resulting from the incoherent

combination of the orthogonal double-lobed spatial profiles.

Spatial beam profiles corresponding to higher-order fiber modes were also seen in the

experiment. As two examples, images (d) and (e) of Fig. 3.6 show profiles correspond-
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ing to the LG10 and LG20 modes. They were obtained by using optical filters with

a 10-nm passband centered at 770 nm and 890 nm wavelengths, respectively. The

most notable feature needs to be stressed is that a GIMF can be used as a device

that not only shifts the pump wavelength toward the red side through SRS but also

performs the beam cleanup owing to the fact that different-order Raman peaks gener-

ally propagate in different modes of the fiber. The main reason for the Raman beam

cleanup is that the lower order modes generally have a larger Raman gain because

of their greater overlap with the higher concentration of GeO2 near the center of the

GIMF core [21]. A detailed analysis of SRS-induced beam cleanup in graded-index

multimode optical fibers can be found in Ref. [32]. Chiang reported similar results for

higher order SRS combs in a 30-m-long fiber [33]. However, only LP01 mode (corre-

sponding to LG00 mode here) was observed for a 1-km-long fiber. In our experiments,

higher-order modes even for a 1-km-long fiber, have been observed and beam cleanup

was not at the same level reported in Ref. [33].

3.4 Conclusion

In conclusion, we have used a standard, telecommunication-grade, graded-index mul-

timode fiber for SRS generation by pumping it at 523 nm with 8-ns pulses. We observe

multiple cascaded Raman peaks extending up to 1300 nm. Beyond that wavelength,

the nature of dispersion changes from normal to anomalous because our fiber has its

zero-dispersion wavelength near 1320 nm. At higher pump powers, in addition to the

multiple cascaded Raman peaks, we observe a single broadband spectral peak, extend-

ing from 1350 to 1750 nm. Its origin appears to be related to the formation of solitons

through modulation instability, intrapulse raman scattering, as well as collision-based

spectral broadening. Such features have been observed in the past for single-mode
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fibers or few-mode step-index fibers (see, e.g., Mussot et al. [34]). Our experiments

show that a supercontinuum can also form in a highly multimode telecommunication-

grade, graded-index multimode fiber. The multimode nature of the fiber can also be

useful from a practical standpoint. For example, we observed that different spectral

peaks have spatial patterns that correspond to different fiber modes. This feature can

be useful for beam cleanup. Future efforts will focus on extending the spectrum to the

infrared region and on stabilizing the frequency and power of individual comb lines

for practical applications.
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